Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0?
Find all unique triplets in the array which gives the sum of zero.
Example
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is:
(-1, 0, 1)
(-1, -1, 2)
Note
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
相比之前的 2 Sum, 3 Sum 又多加了一个数,按照之前 2 Sum 的分解为『1 Sum + 1 Sum』的思路,我们同样可以将 3 Sum 分解为『1 Sum + 2 Sum』的问题,具体就是首先对原数组排序,排序后选出第一个元素,随后在剩下的元素中使用 2 Sum 的解法。
class Solution:
"""
@param numbersbers : Give an array numbersbers of n integer
@return : Find all unique triplets in the array which gives the sum of zero.
"""
def threeSum(self, numbers):
triplets = []
length = len(numbers)
if length < 3:
return triplets
numbers.sort()
for i in xrange(length):
target = 0 - numbers[i]
# 2 Sum
hashmap = {}
for j in xrange(i + 1, length):
item_j = numbers[j]
if (target - item_j) in hashmap:
triplet = [numbers[i], target - item_j, item_j]
if triplet not in triplets:
triplets.append(triplet)
else:
hashmap[item_j] = j
return triplets
由于排序后的元素已经按照大小顺序排列,且在2 Sum 中先遍历的元素较小,所以无需对列表内元素再排序。
排序时间复杂度 O(nlogn), 两重for
循环,时间复杂度近似为 O(n2),使用哈希表(字典)实现,空间复杂度为 O(n).
目前这段源码为比较简易的实现,leetcode 上的运行时间为500 + ms, 还有较大的优化空间,嗯,后续再进行优化。